Abstract

This paper presents the structural and optical properties of magnesium doped zinc oxide nanoparticles synthesized by mechanochemical processing. ZnO nanoparticles of different crystallite size were synthesized by milling the precursor materials for 5 h in a high energy planetary ball mill in Zr2O3 media. NaCl was added as diluent to control the reaction rate in order to avoid the growth of nanoparticles. The milled powders were heat treated at 600° C and then NaCl was leached out using distilled water. X‐ray Diffraction (XRD) technique was employed for the phase and crystallite size analysis of the nanoparticles. Crystallite sizes were calculated from the XRD peak broadening using the Sherrer’s formula. Scanning Electron Microscope was employed to analyze the particle morphology and size distribution of the Mg doped ZnO nanoparticles. Ultraviolet—Visible (Uv‐Vis) spectroscope also was employed to analyze the optical absorption of the ZnO nano particles. Tauc plots were used to determine the energy gap of the nanoparticles samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.