Abstract

Rayleigh interferometry has been extensively used for the precise determination of diffusion coefficients for binary and ternary liquid mixtures. For ternary mixtures, the 2x2 matrix of multicomponent diffusion coefficients is obtained. Polydispersity adds complexity to the meaning of these measured diffusion coefficients. Here we discuss three important issues of polydispersity regarding the diffusion measurements extracted from this interferometric technique. First, we report novel equations for the extraction of diffusion moments from the Rayleigh interferometric pattern. These moments are used to define polydispersity parameters for macromolecular systems. We have experimentally determined mean diffusion coefficients and polydispersity parameters for aqueous solutions of poly(ethylene glycol) and poly(vinyl alcohol) at 25 degrees C. Aqueous solutions of poly(ethylene glycol) mixtures were used to examine the accuracy of the polydispersity parameters. Second, we compare Rayleigh interferometry to dynamic light scattering. Specifically, we have performed diffusion measurements on the same system using both techniques. To our knowledge, no direct experimental comparison between dynamic light scattering and classical methods for the measurements of diffusion coefficients has been previously reported in relation to polydispersity. We find that substantial discrepancies (i.e., 1 order of magnitude) between the mean diffusion coefficients obtained from these two different techniques can be observed when polydispersity is large. Third, for two-solute mixtures with one polydisperse solute, we report a novel corrective procedure for extracting accurate ternary diffusion coefficients from Rayleigh interferometry. Computer simulations were used to examine the accuracy of the extracted ternary diffusion coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call