Abstract

The impact of block connectivity on the morphologies of four block copolymers of varying architecture containing polystyrene (PS) and polyisoprene (PI) has been studied. The volume fraction of PS and molecular weight are held constant while varying the architecture from a linear PS–PI diblock copolymer to three different miktoarm star architectures: PS2PI, PSPI2, and PS2PI2. Morphologies of the PS2PI and PSPI2 miktoarm stars are different from those observed for the linear copolymer and dependent on the connectivity of the copolymer blocks. The change in morphology with connectivity indicates that combining two chains at a junction point leads to chain crowding, where subsequent excluded volume effects drive the change in morphology for each sample. The PS2PI2 miktoarm star exhibits the same morphology as the linear diblock but with a reduction in the size of the domains. The extent of the decrease in domain size indicates that chain stretching impacts the formation of this morphology. Experimentally obse...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.