Abstract

The effect of machining-induced surface residual stress on the stress corrosion cracking (SCC) initiation in 316 stainless steel was investigated in boiling magnesium chloride solution. The crack density was used to evaluate the SCC initiation and propagation at different residual stress levels. The results showed a strong correlation between the residual stress and the resultant micro-crack density. When the residual stress reached a critical value, the micro-crack density increased significantly in the very early phase, and the critical stress is 190MPa for 316 stainless steel. Additionally, the cracking behavior could be correlated with the machining effects on the surface layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.