Abstract

For the machining of long and narrow surfaces and when processing multiple pieces, planing technology is used, the productivity of which can be higher than that of milling, although it is relatively slow machining. The article aims to study the degree of influence of the geometry of the tool (the angle of cutting-edge inclination and the angle of the tool-orthogonal rake), as well as the cutting conditions (cutting depth and cutting speed) on the chip characteristics (temperature and microhardness) in orthogonal and oblique slow-rate machining of steel 1.0503 (EN C45). The experiments were carried out on specially prepared workpieces designed for immediate stopping of machining. The results of the experiments were statistically processed, and behavioural models were created for temperature and Vickers microhardness of chips for individual combinations of factors. The obtained dependencies revealed how the geometry of the cutting tool and the cutting conditions affect the temperature and microhardness in the cutting area and at the same time allowed the best conditions for both orthogonal and oblique machining to be set up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call