Abstract

Lysophosphatidylcholine (LPC) is a product of phosphatidylcholine hydrolysis by phospholipase A(2) and a mediator of the lipid-induced atherosclerotic changes. In this study, we determined the effects of LPC on vasomotor functions, oxidative stress, and endothelial nitric oxide synthase (eNOS) expression in porcine coronary arteries. Porcine coronary arteries were cut into 5-mm rings and were treated with LPC or antioxidant selenomethionine (SeMet). For the vasomotor studies, we used a myograph tension system. Levels of superoxide anion (O(2)(-)) were detected by the lucigenin-enhanced chemiluminescence method. The eNOS protein level was studied by immunohistochemistry with avidin-biotin complex immunoperoxidase procedure. Endothelium-dependent relaxation in response to bradykinin was reduced by 36% and 81% for the rings treated with 12.5 and 25 mum of LPC, respectively, as compared with controls (P < 0.05). Endothelium-independent relaxation in response to sodium nitroprusside also was reduced by 63% after treatment with 25 mum LPC (P < 0.05). The O(2)(-) level was increased in the porcine arteries treated with 25 mum of LPC by 41% as compared with controls (P < 0.05). The antioxidant SeMet reversed the effects of LPC on vascular relaxation and O(2)(-) production. Immunoreactivity of eNOS in LPC-treated vessel rings also was reduced substantially. LPC impairs endothelium-dependent and endothelium-independent vasorelaxation. This effect is associated with increased superoxide radical production and decreased eNOS activity and is practically reversed with the use of the antioxidant SeMet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.