Abstract
Granulosa cells (GCs) surrounding oocytes are crucial for follicular growth, oocyte development, ovulation, and luteinization under the dynamic co-stimulation of follicle stimulating hormone (FSH) and luteinizing hormone (LH). This study aimed to investigate the effect of LH levels on GCs in preovulatory follicles under gonadotropin releasing hormone antagonist-based ovarian stimulation. In vitro experiments were also conducted to study the direct effect of LH on GCs. Twelve infertile women were divided into low (L), medium (M), and high (H) LH groups according to their serum LH levels during ovarian stimulation. RNA-sequencing (RNA-seq) was conducted to examine the transcriptome profiles of GCs obtained from the above patients during the oocyte retrieval. The activity of mitochondrial dehydrogenase was measured under the stimulation of recombinant LH (rLH) concentration gradient combined with recombinant FSH. The ultrastructures of subcellular organelles were observed. Bioinformatic analyses showed that compared with the M group, molecule and pathway changes in the L group and in the H group were similar. In cultured GCs, both insufficient and excessive rLH impaired the activity of mitochondrial dehydrogenase. With the medium rLH concentration, numerous cell connections and abundant mitochondria and liposomes were observed. Compared with the medium concentration, GCs showed smaller and rounder mitochondria, more autophagosomes, and massive organelles damages with excessive rLH, and swollen, circular, or forked mitochondria were observed with inadequate rLH. RNA-seq provided a novel spectrum of transcriptome characteristics of GCs potentially affected by serum LH levels during ovarian stimulation. In vitro, rLH could directly affect GCs at the subcellular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.