Abstract

Lung volume reduction surgery (LVRS) has been suggested as improving respiratory mechanics in patients with severe chronic obstructive pulmonary disease (COPD). We hypothesized that LVRS might lengthen the diaphragm, increase its area of apposition with the chest wall, and thereby improve its mechanical function. To determine the effect of bilateral LVRS on diaphragm length, we measured diaphragm length at TLC, using plain chest roentgenograms (CXRs), in 25 patients (11 males and 14 females) before LVRS and 3 to 6 mo after LVRS. A subgroup of seven patients (reference data) also had diaphragm length measurements made with CXRs, using films made within a year before their presurgical evaluation. Right hemidiaphragm silhouette length (PADL) and the length of the most vertically oriented portion of the right hemidiaphragm muscle (VDML) were measured. Diaphragm dome height was determined from the: (1) distance between the dome and transverse diameter at the manubrium; and (2) highest point of the dome referenced horizontally to the vertebral column. Patients also underwent spirometry, measurements of lung volumes and diffusion capacity, an incremental symptom-limited maximum exercise test, and measurements of 6 min walk distance (6MWD) and transdiaphragmatic pressures during maximum static inspiratory efforts (Pdimax sniff) and bilateral supramaximal electrophrenic twitch stimulation (Pditwitch) both before and 3 mo after LVRS. Patients were 58 +/- 8 yr of age, with severe COPD and hyperinflation (FEV1 = 0.68 +/- 0.23 L, FVC = 2.56 +/- 7.3 L, and TLC = 143 +/- 22% predicted). Following LVRS, PADL increased by 4% (from 13.9 +/- 1.9 cm to 14.5 +/- 1.7 cm; p = 0.02), VDML increased by 44% (from 2.08 +/- 1.5 cm to 3.00 +/- 1.6 cm, p = 0.01), and diaphragm dome height increased by more than 10%. In contrast, diaphragm lengths were similar in subjects with CXRs made before LVRS and within 1 yr before evaluation. The increase in diaphragm length correlated directly with postoperative reductions in TLC and RV, and also with increases in transdiaphragmatic pressure with maximal sniff (Pdimax sniff), maximal oxygen consumption (V O2max), maximal minute ventilation (V Emax), and maximum voluntary ventilation following LVRS. We conclude that LVRS leads to a significant increase in diaphragm length, especially in the area of apposition of the diaphragm with the rib cage. Diaphragm lengthening after LVRS is most likely the result of a reduction in lung volume. Increases in diaphragm length after LVRS correlate with postoperative improvements in diaphragm strength, exercise capacity, and maximum voluntary ventilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call