Abstract
The effect of lung inflation on chest wall mechanics was studied in 11 vagotomized pentobarbital sodium-anesthetized dogs. Diaphragmatic shortening (percent change from initial length at functional residual capacity, %LFRC) and transdiaphragmatic pressure swings (delta Pdi) were compared with control values over a range of positive-pressure breathing that produced a maximum increase in lung volume to 40% of inspiratory capacity. There was no change in the electromyogram of the diaphragm or parasternal intercostals during positive-pressure breathing. delta Pdi and tidal volume (VT) fell to 52 +/- 3.3 and 42.5 +/- 5% (SE) of control. This was associated with a reduction in the initial resting length of 13 +/- 1.9 and 21 +/- 2.2%LFRC (SE) in the costal and crural diaphragms, respectively. Tidal diaphragmatic shortening, however, decreased to 66 +/- 7 and 57 +/- 7 and the mean velocity decreased to 78 +/- 10 and 63 +/- 8% (SE) of control for the costal and crural diaphragms, respectively. We conclude that the reduction in diaphragmatic shortening is the main determinant of the reduced delta Pdi and VT during lung inflation and relate this to what is currently known about diaphragmatic contractile properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.