Abstract

In this research, the cooling heat transfer coefficient and pressure drop of supercritical CO 2 with PAG-type lubricating oil entrained were experimentally investigated. The inner diameter of the test tubes ranged from 1 to 6 mm. The experiments were conducted at lubricating oil concentrations from 0 to 5%, pressures from 8 to 10 MPa, mass fluxes from 200 to 1200 kg m −2 s −1, and heat fluxes from 12 to 24 kW m −2. In comparison to the oil-free condition, when lubricating oil entrainment occurred, the heat transfer coefficient decreased and the pressure drop increased. The maximum reduction in the heat transfer coefficients—about 75%—occurred in the vicinity of the pseudocritical temperature. The influence of oil was significant for a small tube diameter and a large oil concentration. From visual observation, it was confirmed that this degradation in the heat transfer was due to the formation of an oil-rich layer along the inner wall of the test tube. However, when the oil concentration exceeded 3%, no further degradation in the heat transfer coefficient could be confirmed, which implies that the oil flowing along with CO 2 in the bulk region does not influence the heat transfer coefficient and the pressure drops significantly. For a large tube at a lower mass flux, no significant degradation in the heat transfer coefficient was observed until the oil concentration reached 1%. This is due to the transition of the flow pattern from an annular-dispersed flow to a wavy flow for a large tube, with CO 2 flowing on the upper side and the oil-rich layer on the lower side of the test section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.