Abstract

The removal of crop residues for bio-energy production reduces the formation of soil organic carbon (SOC) and therefore can have negative impacts on soil fertility. Pyrolysis (thermoconversion of biomass under anaerobic conditions) generates liquid or gaseous fuels and a char (biochar) recalcitrant against decomposition. Biochar can be used to increase SOC and cycle nutrients back into agricultural fields. In this case, crop residues can be used as a potential energy source as well as to sequester carbon (C) and improve soil quality. To evaluate the agronomic potential of biochar, we analyzed biochar produced from poultry litter, peanut hulls, and pine chips produced at 400°C and 500°C with or without steam activation. The C content of the biochar ranged from 40% in the poultry litter (PL) biochar to 78% in the pine chip (PC) biochar. The total and Mehlich I extractable nutrient concentrations in the biochar were strongly influenced by feedstock. Feedstock nutrients (P, K, Ca, Mg) were concentrated in the biochar and were significantly higher in the biochars produced at 500°C. A large proportion of N was conserved in the biochar, ranging from 27.4% in the PL biochar to 89.6% in the PC biochar. The amount of N conserved was inversely proportional to the feedstock N concentration. The cation exchange capacity was significantly higher in biochar produced at lower temperature. The results indicate that, depending on feedstock, some biochars have potential to serve as nutrient sources as well as sequester C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.