Abstract

Single-phase multiferroic BiFeO3 (BFO) powders were prepared by hydrothermal microwave synthesis and dense BiFeO3 ceramics were fabricated for the first time by the low-temperature high-pressure (LTHP) sintering technique. Effect of sintering temperature ranging from 400 to 800 °C (3 min and 10 min) and pressure of 3–8 GPa on structural, microstructural, electric and magnetic properties were investigated through X-ray diffraction, scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density and magnetic measurements. The results highlighted that LTHP sintering method, thanks to the high pressure involved, requires lower temperature and shorter time than other techniques, avoiding BiFeO3 phase degradation. SEM images show that for short experimental time (t = 3 min) the average grain size of the sintered samples was approximately the same size of raw powder. Extending the sintering time up to 10 min the grain growth phenomena occurred. Moreover the results indicate that the best obtained density value was around 98% of theoretical density. The dielectric behavior of BiFeO3 ceramics was not significantly influenced by the LTHP sintering conditions. Magnetic measurements showed that ceramic BiFeO3 is weakly ferromagnetic at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.