Abstract

This study evaluated the effect of photodynamic therapy (PDT) on infected root canals. Twenty-one human teeth were selected, and 18 were infected by E. faecalis for 60 days. The antimicrobial strategies tested were: G1. Root canal preparation (RCP) using Niquel-Titanium (NiTi) rotary instruments, 2.5% NaOCl, and final irrigation with 17% EDTA, followed by PDT with methylene blue photosensitizer and laser diode low power; G2. RCP using stainless steel files and the same irrigation and PDT protocols as G1; G3. Same RCP protocol as G1 without PDT; G4. Only irrigation with 2.5% NaOCl; G5. Same PDT protocol as G1 without RCP; G6. Negative control; G7. Positive control. Samples for microbiological tests were collected initially (S1), after RCP (S2), and after PDT (S3). Subsequently, the roots were sectioned and prepared for Scanning Electron Microscopy (SEM) analysis. Bacterial growth was analyzed according to the turbidity of the culture medium, followed by spectrophotometric optical density (nm). The effect of PDT on the dentinal structure was evaluated at magnifications 1,600X and 5,000X and described qualitatively. The Wilcoxon test was used for the comparisons from the same specimens, and the Mann-Whitney test was used to compare groups ((=5%). Bacteria were found in all experimental groups' microbiological samples (S1, S2 and S3). The optical density of culture media was lower in S2 than in S1 of G1, 2, 3, and 4 (p> 0.05). After PDT (S3) in G1 and 2, there was an additional reduction in optical density of the culture medium, respectively (p>0.05). In Group 5, the analysis of culture media at S2 revealed an increase in optical density compared to S1(p>0.05). In SEM images of G1, 2, and 5, dentin with melting and recrystallization areas were evidenced. After preparation of the root canal with the rotary system or manually associated with 2.5% NaOCl, PDT was not able to completely eliminate E. faecalis present in the root canal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.