Abstract

The direct effect of cold on the inhibition of B cell secretion is well known in hibernating and experimentally hypothermic mammals. This temperature dependency may result from the inhibition of ion transport across the membranes. In order to verify this hypothesis, ionic effluxes and insulin secretion from rat islets loaded with 86Rb+ and 45Ca+ were measured during perifusion. At 37 degrees C, the rise in glucose concentration from zero to 16.7 mmol/l provoked a rapid decrease in 86Rb+ efflux, an early fall and subsequent rise in 45Ca2+ efflux and a typical biphasic pattern of insulin secretion. At 27 degrees C, glucose induced only a very slight increase in insulin secretion, while the fluxes of radioactive ions were not significantly modified in amplitude but were clearly delayed. At 17 degrees C, no insulin response to glucose was observed and the decrease in K+ conductance indicated by 86Rb+ flux decrease was less temperature-dependent than the movement of Ca2+. After supplementary stimulation with a high extracellular concentration of Ca2+, insulin secretion was enhanced at 27 degrees C and reached levels induced by glucose alone at 37 degrees C. An increase in hormone secretion occurred even at 17 degrees C, but only during a first phase of secretion. Regular increases in temperature potentiated insulin secretion and provoked changes in ionic fluxes which suggest that B cell depolarization (86Rb+ flux decrease) induced by glucose can occur at 15 degrees C but cannot induce the opening of voltage-dependent Ca2+ channels (increase in 45Ca2+ efflux) until temperatures higher than 27 degrees C are reached.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.