Abstract

Copper with two purities (99.8 and 99.995 pct) was subjected to shock compression from an initial temperature of 90 K. Shock compression was carried out by explosively accelerating flyer plates at velocities generating pressures between 27 and 77 GPa. The residual microstructure evolved from loose dislocation cells to mechanical twins and, at the 57 and 77 GPa pressures, to complete recrystallization, with a grain size larger than the initial one. The shock-compressed copper was mechanically tested in compression at a strain rate of 10−3 s−1 and temperature of 300 K; the conditions subjected to lower pressures (27 and 30 GPa) exhibited work softening, in contrast to the conventional work-hardening response. This work softening is due to the uniformly distributed dislocations and the formation of loose cells, evolving, upon plastic deformation at low strain rates, into well-defined cells, with a size of approximately 1 µm. The 99.995 pct copper subjected to the higher shock-compression pressures (57 and 77 GPa) exhibited a stress-strain response almost identical to the unshocked condition. This indicates that the residual temperature rise was sufficient to completely recrystallize the structure and eliminate the hardening due to shock compression. Thermodynamic calculations using the Hugoniot-Rankine conservation equations predict residual temperatures of 570 and 1000 K for the 57 and 77 GPa peak pressures, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.