Abstract

The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite (δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.