Abstract

The 'stage albinism line of winter wheat' FA85 exhibits a severe block in chlorophyll (Chl) biosynthesis with prolonged low-temperature treatment. The correlations between leaf color and low temperature provide more comprehensive understanding of low temperature as an environmental signal that regulate the metabolic changes in the entire Chl-synthesizing pathway. In this study, we investigated differences in Chl biosynthesis between leaves of Aibian1 and FA85 by measuring their Chl precursors and heme content, transcripts for key genes of Chl biosynthesis and key enzyme activities. With prolonged low-temperature treatment, the Chl content gradually decreased, but Chl precursors, including protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide (Pchlide), simultaneously accumulated. Parallel to the decline in Chl content, the protoporphyrin IX distribution toward Chl synthesis was less than that in heme synthesis in the leaves of FA85. Corresponding to the change of protoporphyrin IX distribution, the relative changes in magnesium chelatase (EC 6.6.1.1) and ferrochelatase (EC 4.99.1.1) activities in the leaves of FA85 also indirectly reflected channeling of the metabolic flow into heme rather than Chl. A drastic loss in the transcripts for Pchlide oxidoreductase (EC 1.3.1.33) and Chl synthase (EC 2.5.1.62) accounted for a decrease in the metabolic flux and the re-direction of metabolites. The high-level accumulations of Chl precursors and traces of Chl in the leaves of FA85 suggest that a severe block between the steps from Pchlide to Chl formation during Chl biosynthesis is partially derived from the transcriptional downregulation of Pchlide oxidoreductase and Chl synthase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.