Abstract

Al-12mass%Si binary alloy was fabricated by laser-powder bed fusion (L-PBF). The effect of low temperature annealing (LTA) less than 573 K on electrical and mechanical properties, microstructure, and residual stress of L-PBF Al-12mass%Si was investigated. Due to LTA, electrical resistivity at 77 K and 293 K changed from 34 nΩm down to 10 nΩm and from 68 nΩm down to 45 nΩm, respectively. The lattice constant of α-Al phase increased around 0.0005 nm by LTA according to X-ray diffraction. The change was associated with the decrease in the concentration of solid-solution Si of around 3.4 mass% by electrical resistivity measurement and 3 mass% by X-ray diffraction, when the annealing temperature was 473 K. Whereas, Vickers hardness increases around 145 HV compared with that for the as-built value of 141 HV, and then, decreases down to 126 HV and saturates. TEM/EDS observations confirmed the precipitation of fine Si within the α-Al phase. The decrease in annealing temperature increases the time to reach the Vickers hardness peak. 0.2% proof stress obtained by compression tests shows anisotropy, which can be attributed to the anisotropy on residual stress, which still exists after LTA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call