Abstract

The short-term effects of O2 deficiency and sodium azide (NaN3) on the hydraulic conductivity of cortical cells in wheat roots was studied using the pressure probe. Hydraulic conductivities were obtained by measuring either turgor relaxation, or volume relaxation under pressure clamp. Both low O2 concentration and NaN3 increased the half times of pressure and volume relaxations. The increases in T½ were found to be due to a decrease in the hydraulic conductivity (Lp) of the cells. The mean values of Lp from pressure relaxation experiments were 7.75 × 10-1m s-1 Mpa-1 in the fully aerated solution and 1.15 and 2.17 x 10-1m s-1 Mpa-1 in low O2 concentration and 1 mol m-3 NaN3 solutions respectively. The pressure clamp experiments yielded similar results to pressure relaxation experiments for both low O2 concentration and 1 mol m-3 NaN3 treatments. In addition to determination of Lp, pressure and volume relaxation experiments were also used to evaluate osmotic volume of the cells. In aerated solutions the osmotic volume of the cells was about twice that of their geometric volume, but in low O2 concentration and NaN3 solutions the osmotic cell volume was reduced and approximately equal to the geometric volume. The decrease in osmotic volume and part of the reduction in Lp may be explained by the occlusion of plasmodesmata induced by low O2 concentration and NaN3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.