Abstract

ObjectivesThe aim of this study was to investigate the effect of the vibration amplitude of mechanical ultrasound waves (27 kHz) on the viability and morphology of human gingival fibroblasts (hGFs) when cultured on a biomaterial substrate. MethodhGFs were seeded on tissue culture plates (TCPs) and an Ti6Al4V titanium alloy surface in two groups for three days and seven days of cell culture. The cells were subjected to three vibration amplitudes for 20 min each day. Scanning electron microscope (SEM) images were used to characterize cell morphology. ResultsExperiments showed that hGF cells became detached from their plates at a vibration amplitude comparable to an intensity of 260 mW/cm2. In addition, hGfs that received a vibrational amplitude comparable to an intensity of 50 mW/cm2 underwent significant proliferation proliferated significantly; however, cells receiving higher amplitudes suffered from adverse effects. ConclusionsSEM images of hGFs on titanium disks at vibration amplitude comparable to an intensity 50 mW/cm2 showed a remarkable hexagonal architecture, which we refer to as a honeycomb pattern. On day 6 the observed hGFs on TCPs, proliferated at a higher rate and new cells attached uniformly on the existing layer of cells. These data indicate the effect of cellular tissue as a substrate on the growth of new hGFs under low-intensity ultrasound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call