Abstract

The addition of a low frequency RF (LFRF) component during plasma-enhanced chemical vapor deposition of porous SiCOH ultra low-κ films allowed for the incorporation of higher carbon content without lowering the Young's modulus or increasing the dielectric constant. The porous SiCOH films typically contain carbon bonded into the silica matrix primarily as Si(CH3)x species. The low frequency RF increased the total carbon content by adding CH2 and –CH = CH- species with some reduction of Si(CH3)x species. It also altered the SiOx bonding structure by increasing network SiOx bonding at the expense of the suboxide, indicating an increase in SiOx crosslink density. Although higher carbon content usually lowers the modulus of porous SiCOH films, the modulus of the higher carbon films generated by LFRF did not decrease because of their increased network SiOx bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call