Abstract
Randomized controlled trial. OBJECTIVE.: To determine the effect of low-dose ketamine on the voltage needed to elicit maximal amplitude of the motor-evoked response to transcranial electrical stimulation during propofol/remifentanil anesthesia in children undergoing scoliosis surgery. Motor-evoked potentials (MEPs) are increasingly used to assess the integrity of motor pathways during surgery. Whereas most general anesthetics depress MEP amplitude, the effect of ketamine has been variable, ranging from little or no reduction to an increase in amplitude, suggesting that ketamine may be useful as an agent to facilitate MEP monitoring. We tested the hypothesis that low-dose ketamine would reduce the voltage required to elicit maximal amplitude of the motor-evoked response to transcranial electrical stimulation during propofol/remifentanil anesthesia. Thirty-four patients 12 to 16 years of age undergoing posterior instrumentation for correction of idiopathic scoliosis were randomly assigned to receive low-dose ketamine (0.5 mg/kg bolus, followed by 4 microg/kg/min infusion) or an equal volume of saline. Anesthesia was maintained using a mixture of 30% oxygen in air, continuous infusion of propofol at a rate of 100 to 150 microg/kg per min, and continuous infusion of remifentanil. Myogenic motor-evoked responses to transcranial electrical stimulation of the motor cortex were recorded. The minimum voltage required to elicit maximal amplitude of the MEP response was determined. Voltage requirements were compared using the Mann-Whitney U rank sum test. P < 0.05 was considered statistically significant. No significant difference was found in the minimal voltage needed to elicit maximum amplitude of the MEP response. Median (range) voltage requirements in the ketamine and control groups were 227 V (range, 160-350 V) and 215 V (range, 150-300 V), respectively. Addition of low-dose ketamine to propofol/remifentanil anesthesia does not significantly reduce the voltage needed to elicit maximum amplitude of the motor-evoked response to transcranial electrical stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.