Abstract

A shift in outcomes of predator-prey interactions in plankton community may occur at sublethal dissolved oxygen concentrations that commonly occur in coastal waters. Laboratory experiments were conducted to investigate how a decline in dissolved oxygen concentration alters the predation rate on fish larvae by two estuarine predators. Behavior and consumption of larval fish by moon jellyfish Aurelia aurita (103.1±12.4 mm in bell diameter) and by a juvenile piscivore, Spanish mackerel Scomberomorus niphonius (30.1±2.1 mm in standard length: SL), were observed under four oxygen concentration treatments (1, 2 and 4 mg l−1 and air-saturated: 5.8 mg l−1). Larvae of a coastal marine fish species, red sea bream Pagrus major (7.21±0.52 mm SL), were used as prey for the experiment. Bell contraction rate of the jellyfish did not vary among the oxygen concentrations tested, indicating a tolerance to low oxygen concentration. Gill ventilation rate of the Spanish mackerel increased and swimming speed decreased as the oxygen concentration decreased, indicating that oxygen concentrations ≤4 mg l−1 are physiologically stressful for this species. The number of larvae consumed in 15 min. by jellyfish increased whereas those consumed by Spanish mackerel decreased with the decrease in oxygen concentration. Low oxygen concentrations that are commonly observed in coastal waters of Japan during summer have the potential to increase the relative importance of jellyfish as predator of fish larvae and to change the importance of alternative trophic pathways in estuarine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call