Abstract
Transcranial magnetic stimulation (TMS) can monitor or modulate brain excitability. However, reliability of TMS outcomes depends on consistent coil placement during stimulation. Neuronavigated TMS systems can address this issue, but their cost limits their use outside of specialist research environments. The objective was to evaluate the performance of a low-cost navigated TMS approach in improving coil placement consistency and its effect on motor evoked potentials (MEPs) when targeting the biceps brachii at rest and during voluntary contractions. We implemented a navigated TMS system using a low-cost 3D camera system and open-source software environment programmed using the Unity 3D engine. MEPs were collected from the biceps brachii at rest and during voluntary contractions across two sessions in ten non-disabled individuals. Motor hotspots were recorded and targeted via two conditions: navigated and conventional. The low-cost navigated TMS system reduced coil orientation error (pitch: 1.18°±1.2°, yaw: 1.99°±1.9°, roll: 1.18°±2.2° with navigation, versus pitch: 3.7°±5.7°, yaw: 3.11°±3.1°, roll: 3.8°±9.1° with conventional). The improvement in coil orientation had no effect on MEP amplitudes and variability. The low-cost system is a suitable alternative to expensive systems in tracking the motor hotspot between sessions and quantifying the error in coil placement when delivering TMS. Biceps MEP variability reflects physiological variability across a range of voluntary efforts, that can be captured equally well with navigated or conventional approaches of coil locating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.