Abstract

The success of effective bioaugmentation processes for remediation of soil and groundwater contamination requires effective transport of the injected microorganisms in the subsurface environment. In this study, the effect of low concentrations of monorhamnolipid biosurfactant solutions on transport of Pseudomonas aeruginosa in an ideal porous medium (glass beads) with hydrophilic or hydrophobic surfaces was investigated by conducting miscible-displacement experiments. Transport behavior was examined for both glucose-grown and hexadecane-grown cells, with low and high surface hydrophobicity, respectively. A clean-bed colloid deposition model was used for determination of deposition rate coefficients. Results show that cells with high surface hydrophobicity exhibit greater retention than cells with low surface hydrophobicity. Rhamnolipid affects cell transport primarily by changing cell surface hydrophobicity, with an additional minor effect by increasing solution ionic strength. There is a good linear relation between k and rhamnolipid-regulated cell surface hydrophobicity presented as bacterial-adhesion-to-hydrocarbon (BATH) rate of cells (R2=0.71). The results of this study show the importance of hydrophobic interaction for transport of bacterial cells in silica-based porous media, and the potential of using low-concentration rhamnolipid solutions for facilitating bacterial transport in bioaugmentation efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call