Abstract
The thrombin aptamer is a 15-mer oligodeoxyribonucleotide that folds into a unimolecular quadruplex consisting of a stack of two guanine quartets connected by two external loops and one central loop and possesses a high affinity for thrombin. We have undertaken a systematic examination, in KCl, of the thermodynamic stability of thrombin aptamer analogues containing sequence modifications in one or more of the loops, as well as in the number of quartets. UV melting studies have been carried out to obtain the relevant thermodynamic parameters for these aptamers. van't Hoff analysis of these data, with a two-state model for unimolecular denaturation, gave excellent fits to the experimental observations. Thermodynamic analysis indicates that the central loop sequence in the parent aptamer is optimal for stability. Modifications in this or other loops can effect either DeltaH degrees, DeltaS degrees, or both. Addition of a single G at the 5'-end decreases stability while addition of a G at the 3'-end increases stability. Differential scanning calorimetry experiments on the thrombin aptamer reveal that a heat capacity change, not detected by UV measurements, accompanies the unfolding of the aptamer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.