Abstract

We report the thermodynamic contributions of loop length and loop sequence to the overall stability of DNA intramolecular pyrimidine triplexes. Two sets of triplexes were designed: in the first set, the C5 loop closing the triplex stem was replaced with 5'-CTnC loops (n = 1-5), whereas in the second set, both the duplex and triplex loops were replaced with a 5'-GCAA or 5'-AACG tetraloop. For the triplexes with a 5'-CTnC loop, the triplex with five bases in the loop has the highest stability relative to the control. A loop length lower than five compromises the strength of the base-pair stacks without decreasing the thermal stability, leading to a decreased enthalpy, whereas an increase in the loop length leads to a decreased enthalpy and a higher entropic penalty. The incorporation of the GCAA loop yielded more stable triplexes, whereas the incorporation of AACG in the triplex loop yielded a less stable triplex due to an unfavorable enthalpy term. Thus, addition of the GCAA tetraloop can cause an increase in the thermodynamics of the triplex without affecting the sequence or melting behavior and may result in an additional layer of genetic regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.