Abstract

Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale. We analyzed responses of grain yield of wheat ( Triticum aestivum L.) and maize ( Zea mays L.), K efficiency, and partial balance (difference between K input through fertilizer and K output in the aboveground biomass) during 15- (1990-2005) or 18-year (1990-2008) K fertilizations at five distinctive agroecological zones across China. Compared to the inorganic nitrogen (N) and phosphorus (P) fertilization, the inorganic NPK fertilization significantly increased grain yields of wheat (21%) and maize (16%-72%) at Qiyang and Changping, where soils have low exchangeable and non-exchangeable K contents, but not at Ürümqi, Yangling and Zhengzhou, where soils have a high exchangeable and non-exchangeable K and/or low N/K ratio in crop plants. Compared to the inorganic NPK fertilization, the inorganic NPK (30% N) and organic manure (70% N) fertilization (NPKM) increased grain yields of wheat (14%-40%) and maize (9%-61%) at four sites, but not at Zhengzhou. For a productivity of wheat at 2-5 t ha −1 or maize at 3-6 t ha −1, 13-26 or 9-17 kg K ha −1 were required to produce 1.0 t wheat or maize. The NP fertilization resulted in the lowest negative partial K balance and accumulated 52 kg K ha −1 year −1 less than the NPK fertilization, which accumulated 28 kg ha −1 year −1 less K than the NPKM fertilization. A re-evaluation of the site-specific fertilization effects on N/K ratio in crop plants and soil K accumulation under current NPK and NPKM fertilization is urgently needed to increase both crop yield and K use efficiency at different agroecological zones across China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.