Abstract

We study the effect of long-range connections on the infinite-randomness fixed point associated with the quantum phase transitions in a transverse Ising model (TIM). The TIM resides on a long-range connected lattice where any two sites at a distance r are connected with a non-random ferromagnetic bond with a probability that falls algebraically with the distance between the sites as 1/r^{d+\sigma}. The interplay of the fluctuations due to dilutions together with the quantum fluctuations due to the transverse field leads to an interesting critical behaviour. The exponents at the critical fixed point (which is an infinite randomness fixed point (IRFP)) are related to the classical "long-range" percolation exponents. The most interesting observation is that the gap exponent \psi is exactly obtained for all values of \sigma and d. Exponents depend on the range parameter \sigma and show a crossover to short-range values when \sigma >= 2 -\eta_{SR} where \eta_{SR} is the anomalous dimension for the conventional percolation problem. Long-range connections are also found to tune the strength of the Griffiths phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.