Abstract
In this study, a drawing arc stud welding method combined with a longitudinal magnetic field was used for welding a 30CrNi3MoV low-alloy super strong steel substrate and Q235 hollow steel, and the effects of a longitudinal magnetic field on the microstructure growth process and mechanical properties of stud welds were studied. The results show that an arc controlled by a longitudinal magnetic field stirred the molten pool continuously, reducing the number of coarse proeutectoid ferrite, increasing the proportion of acicular ferrite, and smoothing the transition of alloyed elements near the weld joint fusion line within a certain range of excitation current. Under the action of the magnetic field, the weld grain size was refined from 4.30 μm to 3.14 μm, and the proportion of large-angle grain boundaries in the weld area increased from 24.27% to 34.2%. After the magnetic field application, the toughness of the welded joint was significantly improved. With an increase in the excitation current, the shear strength of the joint first increased and then decreased to 312 Mpa. Similarly, the impact toughness of the joint first increased and then decreased to 31.88 J·cm−2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.