Abstract

We investigate the effects of boost invariance breaking on the isotropization of pressure in the glasma, using a 3+1D glasma simulation. The breaking is attributed to spatial fluctuations in the classical color charge density along the collision axis. We present numerical results for pressure and energy density at mid-rapidity and across a wider rapidity region. It is found that, despite varying longitudinal correlation lengths, the behaviors of the pressure isotropizations are qualitatively similar. The numerical results suggest that, in the initial stage, longitudinal color electromagnetic fields develop, similar to those in the boost invariant glasma. Subsequently, these fields evolve into a dilute glasma, expanding longitudinally in a manner akin to a dilute gas. We also show that the energy density at mid-rapidity exhibits a 1/τ decay in the dilute glasma stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.