Abstract
Degenerative ocular disorders like age-related macular degeneration (AMD) are associated with long-term pro-inflammatory signals on retinal pigment epithelial (RPE) cells. In this study, we investigated the effect of long term treatment of RPE cells with agonists of toll-like receptor (TLR) -3 (Polyinosinic:polycytidylic acid, Poly I:C), TLR-4 (lipopolysaccharide, LPS) and the pro-inflammatory cytokine TNFα. All tests were conducted with primary porcine RPE. Cells were stimulated with Poly I:C (1, 10, 100μg/ml), LPS (0.1, 1, 10μg/ml) or TNFα (12.5, 25 or 50ng/ml) for 1 day, 7 days or 4 weeks. Cell viability tests (MTT) were additionally tested in ARPE-19cells. Cytokine secretion (IL-6, IL-1β, IL-8, TNFα, TGF-β) was tested in ELISA, phagocytosis in a microscopic assay, and expression of RPE65 in Western blot. Barrier function was tested in transwell-cultured cells by measuring transepithelial resistance for up to 3 days. LPS and TNFα significantly reduce cell viability after 1 day and 7 days, Poly I:C after 7 days and 4 weeks. LPS, Poly I:C and TNFα significantly induce the secretion of IL-6 and IL-8 at all tested time points. IL-1β is increased by LPS and Poly I:C after 1 day, but not by TNFα. TNFα secretion is increased by Poly I:C and LPS after 1 day but not at later time points. TGF-β secretion is not influenced by any stimulus. Concerning RPE function, LPS decreased phagocytosis after 7 days, while Poly I:C and TNFα showed no effect. RPE65 expression was strongly reduced by TNFα and LPS after 4 weeks. Wound healing capacity was reduced by Poly I:C but induced by LPS after 7d and 4 w. Barrier function was not affected by Poly I:C or LPS, while TNFα reduced barrier function after 1h, 4h and 3 days. Long term pro-inflammatory stimuli reduce RPE viability, barrier properties and cellular function and induce pro-inflammatory cytokines and therefore may contribute directly to atrophic changes in AMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.