Abstract
Duloxetine, an inhibitor of both 5-hydroxytryptamine (5-HT) and noradrenaline (NA) reuptake processes, has been developed as a potential antidepressant drug. The present study was initiated to investigate the functioning of multiple components of the 5-HT and NA systems following the long-term administration of duloxetine. In rats treated for 21 days with duloxetine (20 mg/kg/day), the recovery times of dorsal hippocampus CA3 pyramidal neurons from microiontophoretic applications of 5-HT and NA were significantly increased, indicating ongoing reuptake blockade with the minipump in place delivering the drug. The remaining experiments were performed following a 48-h washout. Electrically evoked release of [3H]5-HT from preloaded slices was enhanced in the midbrain, presumably due to a desensitization of the somatodendritic 5-HT1D and 5-HT1A autoreceptors. In addition, evoked release of [3H]5-HT was increased in the hippocampus, which could have been due to the desensitization of the alpha2-adrenergic heteroreceptors located on the 5-HT terminals. In contrast, there was no change in the evoked release of [3H]5-HT in the frontal cortex despite decreased functioning of the 5-HT transporter found in this brain region. Similar to changes in 5-HT release, electrically evoked release of [3H]NA was enhanced in the hippocampus and frontal cortex of rats treated chronically with duloxetine. These increases in [3H]NA release were most likely due to the desensitization of the alpha2-adrenergic autoreceptor in the hippocampus and to the desensitization of the NA transporter in the frontal cortex, respectively. These data suggest that long-term administration of duloxetine is able to induce changes in the 5-HT and NA systems that lead to enhanced release of both 5-HT and NA in some limbic brain areas. Duloxetine, therefore, may be a useful antidepressant compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.