Abstract

The paper studies the mechanical properties and configuration of plastic zones in notched high-strength structural steel under tension. Quantitative analysis of the plastic zones is made by constructing strain intensity distribution patterns with the use of the television-optical measuring complex TOMSC. Fracture associated with plastic flow is analyzed by comparing fractographs and distributions of strain characteristics. It is found that the fracture originates in a region with maximum strain intensity. It is shown that the mechanisms of plastic flow in high-strength steel specimens with Π 4.65, where Π is the index of initial stress stiffness, differ considerably. It is demonstrated that the high-strength steel specimens are fractured by quasibrittle mechanisms; however, ductile micromechanisms through pore nucleation and growth remain operative at all stages of fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.