Abstract

The effect of local environment on the formation of magnetic moments on Fe atoms in iron silicides is studied by combination of ab initio and model calculations. The suggested model includes all Fe d- and Si p-orbitals, intra-atomic Coulomb interactions, inter-atomic Fe-Fe exchange and hopping of electrons to nearest and next nearest neighboring atoms. The parameters of the model are found from the requirement that self-consistent moments on atoms and density of states found from ab initio and model calculations within the Hartree-Fock approximation are close to each other as much as possible. Contrary to the commonly accepted statement that in the ordered Fe3Si and FexSi1−x alloys an increase of the Si concentration within nearest environment of Fe atoms results in a decrease of Fe magnetic moment we find that a crucial role in the formation of magnetic moments is played by the second coordination sphere of Fe atoms. Particularly, the Fe atoms have higher magnetic moments in amorphous films compared to the epitaxial ones due to decreasing the number of iron-atoms in the next nearest environment. Both our model and ab initio calculations confirm existence of known spin crossover with pressure and predict second crossover at higher pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.