Abstract

AbstractThe production of glass/plant fiber hybrid laminates is a possibility for obtaining semistructural materials with sufficient impact properties, and a better life cycle analysis (LCA) profile than fiberglass. The simplest and possibly the most effective configuration for the production of these hybrids would involve the use of a plant fiber reinforced laminate as the core between two glass fiber reinforced laminates. A main limitation to the use of composites including plant fibers is that their properties may be significantly affected by the presence of damage, so that even the application of a low stress level can result in laminate failure. In particular, it is suggested that when loading is repeatedly applied and removed, residual properties may vary in an unpredictable way. In this work, E‐glass/jute hybrid reinforced laminates, impacted in a range of energies (10, 12.5, and 15 J), have been subjected to post‐impact cyclic flexural tests with a step loading procedure. This would allow evaluating the effect of damage dissipation offered by the plant fiber reinforced core. The tests have also been monitored by acoustic emission (AE), which has confirmed the existence of severe limitations to the use of this hybrid material when impacted at energies close to penetration. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.