Abstract

AbstractBACKGROUND: The sulfate reducing process (SRP) was analyzed in order to identify factors that diminish the effectiveness of the SRP during wastewater treatment. The effect of different sulfate loading rates (SLR, 290 to 981 mg SO4‐S L−1d−1) and lactate at a stoichiometric C/S ratio of 0.75 on SRP was studied in an upflow anaerobic sludge blanket (UASB) reactor. The effect of sulfide concentration (0 to 200 mg sulfide‐S L−1) on SRP in batch culture was evaluated.RESULTS: When the SLR was increased, the total organic carbon (TOC) and sulfate consumption efficiencies decreased from 93% ± 3 to 66% ± 2 and 60% ± 5 to 45% ± 4, respectively. Acetate and propionate were accumulated. Microbial analysis showed the presence of microorganisms related with the SRP, fermentation and methanogenesis. In batch culture, when lactate and sulfate were present, SRP and fermentation were observed. When sulfide was added only SRP was observed. At concentrations higher than 150 mg sulfide‐S L−1 the efficiencies, yields and specific consumption rates (q) decreased.CONCLUSION: Based on the sulfide‐S/volatile suspended solid ratio, it was found that the decrease in efficiency and accumulation of acetate and propionate in the UASB reactor was not related to sulfide inhibition but to the q of acetate and propionate, which were up to 11 times lower than lactate. Copyright © 2008 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call