Abstract

This paper presents the recent results of an experimental program aimed at disclosing the loading rate (loading-point-displacement rate) effect on the crack velocity in high-strength concrete (HSC). Eighteen three-point-bend tests were conducted using either a servo-hydraulic machine or a self-designed drop-weight impact device. Four strain gauges mounted along the ligament of the specimen were used to measure the crack velocity. Six different loading rates were applied, from 10 −4 mm/s to 10 3 mm/s (average strain rate from 10 −6 to 10 −1 s −1), i.e., a low loading-rate range (5.50 × 10 −4 mm/s, 0.55 mm/s and 17.4 mm/s) and a high loading-rate range (8.81 × 10 2 mm/s, 1.76 × 10 3 mm/s and 2.64 × 10 3 mm/s). At low loading rates, the crack propagates with increasing velocity. Under high loading rates, the crack propagates with slightly decreasing velocity, though the maximum crack speed reached up to 20.6% of the Rayleigh wave speed of the tested HSC. In addition, the loading-rate effect on crack velocities is pronounced within the low loading-rate regime, whereas it is minor under the high loading-rate range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.