Abstract
ABSTRACT In this paper, the effect of load bundling on overall costs, service level, and CO2 emissions is evaluated for a multi-stage, multi-item supply chain. A simulation-based optimisation approach is used to optimize the inventory management parameters reorder point and lot size. The optimisation approach consists of a simulation model and a metaheuristic search procedure, which is a subclass of the evolutionary algorithm. For the evaluation of the load bundling opportunity in different demand structures, a multicriterial objective function is optimized. The paper shows that the load bundling opportunity has significant cost and environmental benefits. The study points out that the load bundling opportunity leads to smaller and more customer-driven lot sizes which simultaneously reduce the carbon emissions. Finally, results show that for medium to high service level target values, ABC-clustered order rate scenarios lead to lower supply chain costs than demand scenarios with an identical order rate for all items.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.