Abstract

The impact of alkaline cations (Li+ and K+) on the electrocatalytic properties of high-surface-area carbon (HSAC) and nanometric manganese oxides (MnOx) deposited onto HSAC (MnOx/C) used as oxygen reduction reaction (ORR) electrodes has been studied in concentrated LiOH or KOH media. The electrochemical characterizations firstly reveal that HSAC have good ORR electrocatalytic properties in these strong alkaline electrolytes, in agreement with the literature. However, although MnOx/C exhibits high ORR activity in NaOH and KOH media below 1 M (Roche et al., J Phys Chem C 111:1434, 2007), the present study reveals their deactivation in concentrated LiOH or KOH electrolytes because of an insufficient activity of water. The latter is indeed not compatible with a sufficient presence of protons in solution, thereby limiting the necessary proton insertion into the MnOx lattice, a prerequisite for ORR activity (Roche et al., J Phys Chem C 111:1434, 2007). In addition, when LiOH electrolyte is used, another effect penalizes the electrode performances; Li+ ions may insert into the MnOx lattice and stabilize both the Mn atoms at the oxidation state 3 and the oxygen groups at the carbon surface, which prevents their role of redox mediating species and further blocks the catalytic process, eventually yielding increased ORR overpotential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.