Abstract

BackgroundMalaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PurposeTo evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. MethodsThe in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. ResultsLTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. ConclusionLTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.