Abstract

Secondary species are dominant components of PM2.5 in Dushanzi, Xinjiang. It is crucial to investigate the conversion process of secondary components in the atmosphere for regional air pollution control. The water-soluble components were analyzed for samples collected from Dushanzi District of Xinjiang from September 2015 to July 2016. The results showed that the total water-soluble ions (TWSIs) showed a seasonal variation consistent with PM2.5, and the seasonal variation of the ions was in the order-winter (67.86 μg·m-3) > autumn (13.77 μg·m-3) > spring (10.09 μg·m-3) > summer (4.85 μg·m-3); secondary ions (NH4+, SO42-, and NO3-)-accounting for 98% of TWSIs in winter. The results of the aerosol thermodynamic model (E-AIM) that explores the particle liquid water and acidity in Dushanzi District showed that the particles in Dushanzi are acidic with an annual in-situ pH of 0.81, and the pH value of the winter samples was the highest (2.93). The seasonal variation of particles in water was of the order: winter (331.32 μg·m-3) > autumn (5.91 μg·m-3) > spring (5.46 μg·m-3) > summer (1.62 μg·m-3). The annual average nitrogen oxidation rate and sulfur oxidation rate were 0.13 and 0.47, respectively, indicating a secondary conversion of regional pollutants. Further analysis showed that the concentration of sulfate in the particle phase was significantly affected by liquid water content of particles and in-situ pH. The formation of nitrate was mainly caused by heterogeneous reactions under high water content of particle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call