Abstract

To investigate alterations in the transport of D-fructose across the rabbit jejunum when the gut is exposed in vitro to lipopolysaccharide (LPS), an endotoxin causative agent of sepsis. D-fructose intestinal transport was assesed employing three techniques: sugar uptake measurements in rings of everted jejunum (micromol/D-fructose/ml cell water), transepithelial flux measurements in Ussing-type chambers (micromol D-fructose/cm2/h) and transport assays in preparation of brush border membrane vesicles (pmoles D-fructose/mg protein). Samples were taken from the bathing solution and from the extracts of the tissue for radioactivity counting. Adding LPS (3 microg/ml) to tissue decreased the uptake and mucosal to serosal flux of 5 mM D-fructose across the enterocyte. LPS did not modify sugar uptake across brush border membrane vesicles. The inhibitory effect of LPS was suppressed by W-13 (5 x 10(-6) M), a Ca-calmodulin antagonist, and staurosporine (10(-7) and 10(-6) M) and GF-109203X (10(-6) M) a nonselective and selective protein kinase C (PKC) inhibitor respectively. Tumor Necrosis Factor (TNF-alpha), an immunoregulatory cytokine involved in septic responses occurring during bacterial infection at concentrations 3 x 10(-4) to 3 microg/ml, did not affect the sugar transport. LPS can inhibit the intestinal uptake of D-fructose across the rabbit jejunum in vitro by intracellular processes related to PKC and calmodulin protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call