Abstract
The effects of various physical state lipids (rapeseed oil (RO), shortening (ST), beeswax (BW)), on the physicochemical properties of starch (S) (hydroxypropyl distarch phosphate (HP), oxidized hydroxypropyl starch (OS))/gelatin (G) blown films were studied. S/G-lipid blends showed decreased storage modulus and complex viscosity. The formation of hydrogen bonds was inhibited by the ST and BW, but facilitated by the RO. Compared with BW and ST, RO was more effective to promote the melted and fractured of starch. Lipids addition promoted the compatibility of starch and gelatin. The presence of the lipids significantly improved the surface hydrophobicity, mechanical, water vapor barrier and water resistance properties of S/G films. S/G-RO films exhibited the strongest surface hydrophobicity and tensile strength, while HP/G-BW film showed the strongest water resistance and water vapor barrier properties. These results revealed that the appropriate lipids could be used to produce S/G-lipid films with desirable physicochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.