Abstract

Lipoprotein lipase-induced lipolysis of human plasma VLDL usually does not yield a complete conversion of VLDL to LDL due to insufficient loss of surface and core lipids and apolipoprotein E. In order to assess the role of lipid transfer proteins in this process human VLDL and apo E free HDL, in approximately physiologic proportions, and with sufficient albumin to bind all released fatty acids, were subjected to 90% lipolysis of triglycerides in 2 h by lipoprotein lipase in the presence or absence of partially purified human cholesteryl ester and phospholipid transfer proteins. Lipoprotein lipase caused a partial transfer of VLDL unesterified cholesterol (16%) and phospholipid (11%), apo E (19%) and almost complete transfer of apo CII and CIII to HDL. VLDL remnants possessed excess apo E and surface and core lipids when compared to plasma LDL, and densities ranging from that of VLDL/IDL to LDL. With addition of the lipid transfer proteins to the lipolysis incubation there was an increased transfer of phospholipid and unesterified cholesterol (2-fold) and apo E (1.6-fold) to HDL over that for lipoprotein lipase incubations. The source of transferred material was primarily from remnants which isolated in the LDL density range in lipoprotein lipase incubations. This transfer resulted in LDL-like particles which had a smaller particle size but lighter density compared to those in lipoprotein lipase incubation. Transfer of cholesteryl esters to VLDL from HDL in exchange for triglyceride was absent or substantially reduced in incubations containing lipoprotein lipase and lipid transfer proteins compared to incubations with only lipid transfer proteins. It is concluded that during rapid lipolysis lipid transfer proteins promote the loss of phospholipid, unesterified cholesterol and apo E from VLDL remnants but do not promote the transfer of cholesteryl ester from HDL to VLDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.