Abstract

Lipid A is responsible for the activities of endotoxin and may cause circulatory failure and haemolysis. This study evaluated the effects of different lipid A concentrations on red blood cell (RBC) deformation (rheoscope), the aspiration pressure required to aspirate RBC into 3.3 microns pipettes, the membrane shear elastic modulus (i.e. membrane rigidity) and cellular geometry (micropipette system) after 15 min of incubation. Lipid A concentrations of 10 and 100 micrograms ml-1 of RBCs decreased RBC deformability by 26% and 39%, respectively. The aspiration pressure for RBCs into a 3.3 microns micropipette increased by 235% at a lipid A concentration of 10 micrograms ml-1 and by 586% at a concentration of 100 micrograms ml-1. The elastic shear modulus almost doubled at a lipid A concentration of 10 micrograms ml-1 and tripled at 100 micrograms ml-1. At a lipid A concentration of 100 micrograms ml-1, 37% of RBCs showed spicules. These echinocytes were less deformable than discocytes. Mean corpuscular volume, RBC volume and surface area were not affected by lipid A. We conclude that lipid A causes marked reduction of RBC deformability due to increasing membrane rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.