Abstract

The electrokinetic ionic-current rectification in a conical nanopore with linearly varying surface-charge distributions is studied theoretically by using a continuum model composed of a coupled system of the Nernst–Planck equations for the ionic-concentration field and the Poisson equation for the electric potential in the electrolyte solution. The numerical analysis includes the electrochemistry inside reservoirs connected to the nanopore, neglected in previous studies, and more precise accounts of the ionic current are provided. The surface-charge distribution, especially near the tip of the nanopore, significantly affects the ionic enrichment and depletion, which, in turn, influence the resulting ionic current and the rectification. It is shown that non-uniform surface-charge distribution can reverse the direction, or sense, of the rectification. Further insights into the ionic-current rectification are provided by discussing the intriguing details of the electric potential and ionic-concentration fields, leading to the rectification. Rationale for future studies on ionic-current rectification, associated with other non-uniform surface-charge distributions and electroosmotic convection for example, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.