Abstract

The aim of this paper is to elucidate the relation between optimized mirrors configuration, receiver dimension, and its contributed heat loss. An analytical procedure applied to investigate the dynamic relation between optimized reflector field and receiver optimum dimension for a constant width and shift mirrors arrangement north-south Linear Fresnel Concentrator (LFC) with a Trapezoidal Cavity Receiver (TCR). The reflector field optimized by balancing focusing errors whilst the receiver dimension optimized to have highest intersection with reflected beams and lowest heat loss estimated through numerical solutions. Through this analytical procedure, the effects of different imposed variables such as annual working hours and field tilt toward south and field parameters such as reference types, receiver elevation, filling factor, number of mirrors arrays, and mirror quality of reflection on optimized reflectors and receiver dimension and heat loss clarified. It is demonstrated that receiver dimension and its contributed heat loss, vary dynamically in conjugation with optimized field parameters; therefore, field evaluated efficiencies are futile without considering these dynamic relations. Finally, it is understood that the effects of field tilt toward the south under relevant assumptions, filling factor and especially mirror reflection quality on the receiver dimension, and its heat loss variations are significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.