Abstract

Human placental S-adenosylhomocysteine (AdoHcy) hydrolase was subjected to limited papain digestion. The multiple cleavage sites in the enzyme were identified to be Lys94-Ala95, Tyr100-Ala101, Glu243-Ile244, Met367-Ala368, Gln369-Ile370, and Gly382-Val383. Despite multiple cleavage sites in the backbone of the protein, the digested enzyme was able to maintain its quaternary structure and retain its full catalytic activity. The enzyme activity of the partially digested AdoHcy hydrolase was essentially identical to that of the native enzyme at several pH values. The thermal stabilities of the native and partially digested enzymes were only slightly different at all temperatures tested. The stability of both native and partially digested enzymes were examined in guanidine hydrochloride and equilibrium unfolding transitions were monitored by CD spectroscopy and tryptophan fluorescence spectroscopy. The results of these experiments can be summarized as follows: (1) CD spectroscopic analysis showed that the overall secondary and tertiary structures of the partially digested enzyme are essentially identical with those of the native enzyme; and (2) tryptophan fluorescence spectroscopic analysis indicated that there are small differences in the environments of surface-exposed tryptophan residues between the partially digested enzyme and the native enzyme under unfolding conditions. The differences in the free energy of unfolding, delta(delta Gu) [delta Gu(native)-delta Gu(digested)], is approximately 1.3 kcal/mol. When NAD+ was removed from the partially digested enzyme, the secondary and tertiary structures of the apo form of the digested AdoHcy hydrolase were completely lost and the enzymatic activity could not be recovered by incubation with excess NAD+. These results suggest that AdoHcy hydrolase exists as a very compact enzyme with extensive intramolecular bonding, which contributes significantly to the overall global protein stabilization. Identification of the surface-exposed peptide bonds, which are susceptible to papain digestion, has provided some constraints on the spatial orientations of subunits of the enzyme. This information, in turn, has provided supplemental data for X-ray crystallographic studies currently ongoing in our laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call