Abstract

Plants have the potential to reduce CO2 concentration, but their photosynthesis is directly influenced by the indoor lighting environment. As a result, the efficiency of indoor plants is limited by indoor lighting environment. In order to explore the effect of lighting environments on the reduction of indoor CO2 concentration by indoor plants, three representative lighting environments were constructed, including a natural lighting environment, a poor lighting environment and an all-day lighting environment, while five common plants were selected to be planted in five transparent sealed chambers. Experimental results show that the lighting environment affected the CO2 concentration largely in transparent sealed chambers. Compared to the transparent sealed chamber without plants, the highest and average CO2 concentrations were increased by from 47.9% to 160.9% and from 21.6% to 132.4% in the poor lighting environment, respectively, while they decreased by from 60.4% to 84.6% and from 71.4% to 89.7% in the all-day lighting environment. This indicated that plants did not purify the indoor air consistently. Among the selected plants, the most suitable houseplant was Scindapsus aureus, followed by Chlorophytum comosum and Bambusa multiplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.